Skip to main content

What is DHTML-computer world

                                    What is DHTML

 HTML stands for hypertext markup language and XHTML stands for dynamic HTML. HTML is basically a markup language used for creating tags but DHTML is not a language DHTML is web standard technology. XHTML is essentially dynamic HTML. It is a new way of looking at and controlling the standard HTML codes and commands. DHTML is a collection of technologies that are used to create interactive and animated website. DHTML gives more control over the the HTML elements. It allows one to incorporate a client side scripting language. Such as JavaScript, a representation definition language, such as CSS and the document object model in HTML web pages. DHTML also allows the pages to change at any time, without returning to the web server first. It allows scripting languages to change a web page look and function after the page has been fully loaded and during the viewing process. It also allows the user to add effects to their pages that are otherwise difficult to achieve. 





Dynamic HTML is a collective term for a combination of hypertext markup language(HTML) tags and options that can make web pages more animated and interactive than previous versions of HTML. Much of dynamic HTML is specified in HTML 4.0. Simple example of dynamic HTML capabilities include having the co color of a text heading change when a user passes a mouse over it and allowing a user to "drag and drop" an image to another place on a web page. Dynamic HTML can allow web document to look and act like desktop application or multimedia productions.















All PHOTOS ARE PICKED FROM PIXABAY  LINK=pixabay.com

 Thanks for visit this post and it is beneficial for you then leave a comment. If you want any other information and necessary topics related to computer science then tell us in comment. And share this post with your friends

Comments

Post a Comment

Popular posts from this blog

Deadlock in operating system-computer world

  Deadlock in operating system-computer world Deadlock :  In a multi-programming environment, many process may complete for a minute number of resources. A process make a request for a resource and if the resource is not available at that time, the process enter In a waiting state. A waiting state process is never again-able to change state because the resource it has requested is held by other waiting process. This situation is called deadlock. So we can say that a process is said to be deadlock when it is waiting for an event or resources which will never occurs.   so we can say that in this situation none of the process gets executed  since the resource it needs, is held by some other process which is also waits for some other resource to be released.  Let's assume that there are three process P1, P2, p3 and three different resources R1, R2 and R3. R1 is assigned to p1, R2 is assigned to P2 and R3 is assigned to P3.   After sometime P1 demands for R1 which is being used by  P2.

CPU scheduling in operating system-computer world

  CPU scheduling in operating system CPU scheduling :  Whenever the CPU becomes idle, the operating system must select one of the processes. The selection process is carried by the short-term scheduler. The scheduler selects a process from the processes in memory that that are ready to execute and allocate the CPU to that process. The objective of time sharing is to skip the CPU among processes that user interact with each program while the program is in running position. As we discuss above the process scheduler selects an process for execution on the CPU. There will never more then one running process for a single processor system. If there are many processes, the process will have to wait until the CPU is free CPU Scheduling is basis of multi-programming operating system. In CPU scheduling many processes are kept in memory at a time. The CPU scheduler select a process from the many processes. The process scheduler scheduled different processes to be assigned to the CPU based on part

Single partition allocation, Multiple-partition allocation and Fixed Equal-size partitions in operating system-computer world

  Single partition allocation, Multiple-partition allocation and Fixed Equal-size partitions in operating system Single partition allocation In this scheme operating system is residing in law memory and user process are executing in higher memory. Advantages It is simple  It is easy to understand and use Disadvantages User job is limited to the size of available memory. It leads to poor Utilization of processor and memory. Multiple-partition allocation  It is the simplest method for allocating  memory is divided memory into several fixed size partitions. Fixed Equal-size partitions It divides the main memory Into equal number of fixed sized partitions, operating system occupies some fixed portion and remaining portion of main memory is available for user processes. Advantages It supports multi programming. A process whose size is less then or equal to the partitions size can be loaded into any available partition. Disadvantages If a program is big to fit into a partition use overlay te